Mixed heavenly equation: a new integrable multi-Hamiltonian system

نویسندگان

  • M. B. Sheftel
  • D. Yazıcı
چکیده

Abstract In the recent paper by one of the authors (MBS) and A. Malykh on the classification of second-order PDEs with four independent variables that possess partner symmetries [1], mixed heavenly equation appears as one of the canonical equations admitting partner symmetries. Here for the mixed heavenly equation, formulated in a two-component form, we present a Lax pair of Olver-Ibragimov-Shabat type and obtain its multi-Hamiltonian structure. Thus, we discover a new integrable Hamiltonian system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed heavenly equation and Husain’s equation are integrable bi-Hamiltonian systems

In the recent paper by one of the authors (MBS) and A. A. Malykh on the classification of second-order PDEs with four independent variables that possess partner symmetries [1], mixed heavenly equation and Husain’s equation appear as closely related canonical equations admitting partner symmetries. Here for the mixed heavenly equation and Husain’s equation, formulated in a two-component form, we...

متن کامل

M ay 2 00 5 Multi - Hamiltonian structure of Plebanski ’ s second heavenly equation

We show that Plebanski’s second heavenly equation, when written as a firstorder nonlinear evolutionary system, admits multi-Hamiltonian structure. Therefore by Magri’s theorem it is a completely integrable system. Thus it is an example of a completely integrable system in four dimensions. PACS numbers: 11.10.Ef, 02.30.Ik, 04.20.Fy Mathematics Subject Classification: 35Q75, 35L65

متن کامل

1 4 Ju l 2 00 5 Multi - Hamiltonian structure of Plebanski ’ s second heavenly equation

We show that Plebanski’s second heavenly equation, when written as a firstorder nonlinear evolutionary system, admits multi-Hamiltonian structure. Therefore by Magri’s theorem it is a completely integrable system. Thus it is an example of a completely integrable system in four dimensions. PACS numbers: 11.10.Ef, 02.30.Ik, 04.20.Fy Mathematics Subject Classification: 35Q75, 35L65

متن کامل

Bäcklund Transformations for Tri-hamiltonian Dual Structures of Multi-component Integrable Systems

In this paper, the Bäcklund transformation based-approach is explored to obtain Hamiltonian operators of multi-component integrable systems which are governed by a compatible tri-Hamiltonian dual structures. The resulting Hamiltonian operators are used not only to derive multi-component biHamiltonian integrable hierarchies and their dual integrable versions, but also to serve as a criterion to ...

متن کامل

Inverse Scattering Problem for Vector Fields and the Cauchy Problem for the Heavenly Equation

We solve the inverse scattering problem for multidimensional vector fields and we use this result to construct the formal solution of the Cauchy problem for the second heavenly equation of Plebanski, a scalar nonlinear partial differential equation in four dimensions relevant in General Relativity, which arises from the commutation of multidimensional Hamiltonian vector fields.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009